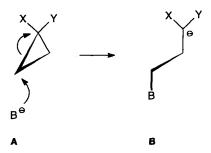
108. Asymmetric Catalysis by Vitamin B_{12} : The Isomerization of Achiral Cyclopropanes to Optically Active Olefins


by Thomas Troxler1) and Rolf Scheffold*

Institut für organische Chemie, Universität Bern, Freiestrasse 3, CH-3012 Bern

(21.IV.94)

Achiral spiroactivated cyclopropanes are isomerized to optically active (R)-(cycloalk-2-enyl)-Meldrum's acids (=(R)-5-(cycloalk-2-enyl)-2,2-dimethyl-1,3-dioxane-4,6-diones) in high yield and ee's up to 86% by catalytic amounts of cob(I)alamin in polar protic solvents.

Introduction. – Ring opening of cyclopropanes A containing two geminal electron-withdrawing groups X and Y by homoconjugate addition of nucleophiles is a known reaction?) (\rightarrow B). Danishefsky and Singh found that spiroactivated cyclopropanes with X,Y = $-C(O)-O-C(Me)_2-O-C(O)-$ (spiroalkylated Meldrum's acids) are especially reactive since the emerging negative charge is optimally delocalized [8]. Ogoshi et al. reported on the homoconjugate addition of cob(I)alamin to activated cyclopropanes leading to 3-substituted propylcob(III)alamins [7]. In cases where the two substituents X and Y were different, two diastereoisomeric 3,3-disubstituted propylcob(III)alamins were obtained in ratios up to 2:1. Very likely, this selectivity is due to enantioselective protonation of the intermediate carbanion.

Since sec-alkylcob(III)alamins easily undergo dehydrocobaltation to olefins, H^+ , and cob(I)alamin, we became interested in the reaction of cob(I)alamin with bicyclo[3.1.0]-hexanes and norcaranes (= bicyclo[4.1.0]heptane) bearing electron-withdrawing groups at C(6) and C(7), respectively. As an extension of our previous work on the enantioselective isomerization of epoxides to allylic alcohols [9] and aziridines to allylic amines [10], we report here on the cob(I)alamin-catalyzed conversion of the achiral spiroactivated cyclopropanes 1 to the optically active (R)-(cycloalk-2-enyl)-Meldrum's acids 2 (Scheme 1).

Part of the Ph. D. thesis of T. T., University of Bern, 1993.

Examples of this process are the homoconjugate addition of enolates [1], amines [2], mercaptanes [2], H₂O [3], enamines [4], cuprates [5], Rh(I)porphyrins [6], and cob(I)alamins [7].

$$(CH_2)_n$$

a) Only one enantiomer of 2 is shown.

These isomerizations favorably complement the Pd^0 -catalyzed S_N2' substitution of allylic acetates by soft nucleophiles as a methodology for the enantioselective synthesis of olefins with malonic-acid-derived substituents in allylic position (for reviews, see [11]).

Results and Discussion. – Starting Materials (Scheme 2). The synthesis of geminally disubstituted cyclopropanes 4 and 5 from olefins proved to be most convenient according to the procedure of Ohishi [12]. The cycloalkenes 3 were consecutively treated with methanesulfenyl chloride (prepared in situ from Me₂S₂ and SO₂Cl₂), dimethyl sodiomalonate (in case of 4) or sodiomalonodinitrile (in case of 5), and dimethyl sulfate and base (NaOMe in case of 4, and Et₃N in case of 5), yielding 4a, 4b, and 5 in 68, 43, and 26% yield, respectively. Alkaline hydrolysis of 4 to the diacids 6 [13] followed by acid-catalyzed treatment with isopropenyl acetate [14] gave the spiroactivated compounds 1a and 1b in 39 and 61% yield, respectively. A mixture of the ethyl norcarane-7-endo- and -exo-carboxylates 7 and 8 (2:7) was obtained by Rh^{II}-catalyzed reaction of ethyl diazoacetate with cyclohexene in 80% yield [15].

Cob(I) alamin-Catalyzed Isomerization. If achiral spiroactivated cyclopropanes 1 were dissolved or dispersed in a polar protic solvent containing catalytic amounts of hydroxocob(III)alamin hydrochlorid (= vitamin $B_{12a} = OH - Cbl \cdot HCl$), Zn powder, and NH₄Cl, optically active (+)-(R)-5-(cycloalk-2-enyl)-Meldrum's acids 2 were formed on standing at room temperature under Ar (Scheme 1). The reaction rates and enantiomeric excesses (ee's) strongly depended on the solvent polarity (Table). The fastest and most selective reactions took place in the most polar solvents, although neither 1 nor 2 were entirely dissolved. These reactions proceeded cleanly (no side products could be detected by H-NMR of the crude product) and in nearly quantitative yield. The influence of temperature on the ee was small (Table, Entries 2 and 3). Although the crude Meldrum's-acid derivatives 2 obtained by this procedure were crystalline, no substantial enrichment of the (R)-enantiomers could be achieved by recrystallization. With the cyclopropanes 4b, 5, 7, and 8, only non-preparative experiments were performed and monitored by GC. The mono- and diester-activated cyclopropanes showed no reaction, even after prolonged heating with 2 mol-% of OH-Cbl · HCl, Zn, and NH₄Cl in MeOH (Table, Entries 9 and 10). The dicyano-activated compound 5 in MeOH gave a complex mixture of products which, according to GC/MS, seem to result from reactions between

Entry	Cyclo- propane	Reaction conditions ^a)			Product			
		Solvent (v/v)	Temp. [°C]	Time [h]	Olefin	Yield [%]b)	ee [%] ^c)	$[\alpha]_D^{22d}$
1	1a	MeOH/H ₂ O 2:1	22	7	2a	100	52	+50
2	1a	THF/H ₂ O 1:15	22	2	2a	100	83	+96
3	1a	THF/H ₂ O 1:15	0	7	2a	92	86	+94
4	1b	DMF	22	240	2b	e)	25	
5	1b	MeOH/dioxane 1:2	22	96	2b	e)	41	
6	1b	MeOH	22	17	2b	81	52	+23
7	1b	MeOH/H ₂ O 1:1	22	2	2b	98	70	+29
8	1b	THF/H ₂ O 1:15	22	2	2b	99	77	+31
9	4b	MeOH	65	72	no reaction			
10	7/8 ^f)	MeOH	65	42	no reaction			
11	5	MeOH	22	115	complex mixture ^g)			
12	5	2м LiClO ₄ in DMF	60	48	9h)	6 ⁱ)	5	

Table. Cob(I)alamin-Catalyzed Isomerization of Cyclopropanes

- a) Reaction conditions: Hydroxocob(III)alamin hydrochlorid (= vitamin B_{12a}; 2 mol-% with respect to the cyclopropane) dissolved in the indicated solvent was reduced in situ by Zn in the presence of NH₄Cl under Ar. A solution of the cyclopropane was injected and the mixture stirred at the given temp. The reaction was monitored by TLC (Entries 1-8) and GC (Entries 9-12). In the case of Entries 1-3 and 6-8, the mixture was diluted with 1 M KHSO₄ and extracted with Et₂O (see Exper. Part).
- b) Yield of crude 2((R)- and (S)-enantiomers) relative to 1. The crude product was essentially pure according to TLC and NMR.
- c) Determined by enantioselective GC: 2a was converted first to the iodolactone 13a (vide infra), whereas 2b was injected directly and pyrolized partially on the injector block to cyclohex-2-enyl keten.
- d) Optical rotation of crude 2 in MeOH (c = 0.1 to 0.4).
- e) Not isolated.
- f) Mixture (2:7) of the endo- and exo-isomers.
- g) Complex mixture of unidentified products, but practically no 9.
- h) Identified by comparison (GC retention times) with racemic 9 (independently prepared by reaction of 3-bromocyclohexene with NaHC(CN)₂ in THF).
- Not isolated. GC: 91.2% of 5, 6.3% of 9, and 2.5% of unidentified products.

the nitrile groups and the solvent (*Table*, *Entry 11*). In a 2M solution of LiClO₄ in DMF at 60°, slow isomerization of 5 to 2-(cyclohex-2-enyl)malononitrile (9 = 2 with NC-CH-CN instead of cyclo[OC(O)-CH-C(O)O-CNe₂]) was observed (*Table*, *Entry 12*).

Configuration by Chemical Correlation. The chirality of the isomerization products (+)-2a and (+)-2b was established according to Scheme 3. The allylic alcohols (+)-11a and (+)-11b, which were shown earlier to have (R)-configuration [9], were converted via ester enolate Claisen rearrangement [16] to the (-)-(R)-(cycloalk-2-enyl)acetic acids

Scheme
$$3^{a}$$
)

10a $n = 1$
b $n = 2$ (CH₂) n

(+)-11a $n = 1$
(+)-11b $n = 2$ (CH₂) n

(CH₂

a) Only one enantiomer of 2, 11, 12, and 13 is shown. For reaction conditions, see Exper. Part.

(-)-12a and (-)-12b. Since acidic hydrolysis of the *Meldrum*'s acid moiety of 2 gave (+)-12, the configuration of (+)-2a and (+)-2b can be deduced to be (R). The liquid acids (+)-12 were easily converted to the crystalline iodolactones (-)-13 which, after simple recrystallization, were obtained as enantiomerically pure compounds.

The preparative conversion of (+)-11a to (+)-13a proved to be more convenient *via* the orthoester variant of the *Claisen* rearrangement [17], which yielded the ethyl ester of 12a (59%). Hydrolysis of the ester, iodolactonization, and crystallization of the pure enantiomer of (+)-13a were accomplished in one pot (11%).

Mechanism of Isomerization. We assume that the mechanism of the isomerization $1\rightarrow 2$ is similar to that of the Cbl-catalyzed isomerization of epoxides to allylic alcohols [18] and aziridines to allylic amines [10]. However, there are two remarkable observations: i) The ee's and the reaction rates of $1\rightarrow 2$ strongly depend on the solvent polarity, with the fastest and most selective reactions taking place in the most polar solvents (*Table*). ii) In the case of $1a \rightarrow 2a$, the color of the reacting mixture is orange-red (color of alkylcob(III)alamin), but dark green-brown (color of alkylcob(I)alamin) in the case of $1b \rightarrow 2b$. The UV/VIS spectrum of the steady state of $1a \rightarrow 2a$ shows a distinct absorption signal at ca. 470 nm which may be attributed to the base-off form of an alkylcob(III)alamin [19], and only a relatively weak shoulder at ca. 390 nm (signal of cob(I) alamin). The spectrum of the steady state of $1b \rightarrow 2b$, on the other hand, is dominated by a sharp signal at 390 nm, and only a very weak signal at 470 nm is detected. These observations suggest the following two-step mechanism: In a first step, the cyclopropane ring is opened by nucleophilic attack of the (chiral) cob(I)alamin to afford a mixture of the two diastereoisomeric [(1R,2R)- and (1S,2S)-alkylcob(III) alamins 14 in a different ratio. In a second step, these intermediates decompose to yield 2, recycled cob(I)alamin, and H⁺ (Scheme 4). For the isomerization of the cyclopentane derivative 1a, the second step seems to be rate-determining, since, in the steady state, alkylcob-(III) alamin is the predominant species. The relative rates of the two steps seem to be reversed for the isomerization of the cyclohexane derivative 1b: The predominance of cob(I)alamin in the steady state indicates that the initial nucleophilic cyclopropane

a) Only one diastereoisomer of 14b and one enantiomer of 2b is shown.

opening step is rate-determining. We assume that the attack of the voluminous cob(I) alamin nucleophile results in a sterically congested conformation of the cyclohexane ring of **1b** on the way to the $S_N 2$ transition state.

The first step is responsable for the enantioselectivity. It is believed that the β -axially oriented acetamido side chains of Cbl direct the approach of the substrate 1 to the reactive Co-center. The influence of solvent polarity on the enantioselectivity is not yet fully understood.

The authors are grateful to Mr. A. Saxer for anal. GC and enantioselective GC. This work was financially supported by the Swiss National Science Foundation.

Experimental Part

1. General. Chemicals and solvents: Vitamin B_{12a} (= hydroxocobalamin hydrochloride pyrogen-free Fr. Ph. BP, 10.7% loss on drying, < 2% cyanocobalamin) from Roussel Uclaf; Et₃N and Zn powder, Fluka puriss. p.a.; Zn wool, Fluka purum, activated by sequential washing with 5% HCl/H2O, H2O, and MeOH; cyclopentene; Fluka puriss.; Me₂S₂ and SO₂Cl₂, Fluka pract.; NaH, Fluka pract., 55-65%, dispersion in oil; Et₂O and pentane from Siegfried, distilled over NaH before use; THF from Siegfried, distilled over K before use; all other reagents were Fluka purum and all other solvents Fluka puriss. p.a. and were used as purchased. Column chromatography: silica gel (30-60 µm) from Baker. Anal. TLC: precoated plates, silica gel 60 F₂₅₄ from Merck. Anal. GC: Hewlett-Packard-5794 gas chromatograph; 20-m Duran glass cap. column coated with SE-54 (df 0.15 μm); temp. program from 40° to 250° , 3° /min; flame-ionization detector (FID). Enantioselective GC ($t_{\rm R}$ in min): Hewlett-Packard-5890 with modified cyclodextrins as chiral stationary phase; column A: 10 m, 20% heptakis{2,3-di-O-propyl-6-O-[(tert-butyl)dimethylsilyl]\{\gamma_r\)-cyclodextrine in OV-1701; column C: 10 m, 20% heptakis\{2,3\-di-O\-methyl-6-O\-\{(tertbutyl)dimethylsilyl] \(\frac{1}{2} - \text{cyclodextrine} \) in OV-1701. In all cases, the ee was determined from the % of relative intensities of base-line-separated peaks of enantiomers and checked by analogous measurements of the corresponding racemic compounds. Melting point (uncorrected): Büchi 510. [α]_D: Perkin-Elmer-241 polarimeter. UV/VIS: Hewlett-Packard-8451A diode array spectrophotometer. IR: Perkin-Elmer-782 spectrometer; only characteristic absorptions are given. ¹H-NMR: Bruker-AM-400-WB (400 MHz) and Bruker-AC-300 (300 MHz) spectrometer; δ -values in ppm with respect to Me₄Si (= 0 ppm) as internal standard. ¹³C-NMR: Bruker-AM-400-WB (100 MHz) and Bruker-AC-300 (75 MHz) spectrometer; Me₄Si (=0 ppm) as internal standard. MS (m/z (%)): Varian-MAT-CH-7A, ionization energy 70 eV; only peaks with intensities > 3% of the base peak are given. GC/MS: Varian MAT-44S. Elemental analyses: Mikroelementaranalytisches Laboratorium, ETH, Zürich.

2. Starting Materials. Dimethyl Bicyclo [3.1.0] hexane-6,6-dicarboxylate [12] (4a). To a soln. of Me₂S₂ (14.12 g, 150 mmol) in CH₂Cl₂ (90 ml), SO₂Cl₂ (20.24 g, 150 mmol) was added at -50°. After stirring for 5 min, cyclopentene (3a; 20.43 g, 300 mmol) was added at -50° within 30 min. The solvent and SO₂ were evaporated at r.t., and the residual oil was transferred by means of a pipette into a soln. of dimethyl sodiomalonate (prepared from dimethyl malonat (43.59 g, 330 mmol) and NaOMe (330 mmol) in 300 ml MeOH) and heated under reflux for 2.5 h. The solvent was distilled off, H₂O (300 ml) added, and the mixture extracted with Et₂O (3 × 150 ml). The extracts were washed with brine (100 ml) and dried (MgSO₄), and the solvent was distilled off. To the remaining brown oil, dimethyl sulfate (41.61 g, 330 mmol) was added and the mixture allowed to stand at r.t. for 15 h. NaOMe (600 mmol) in MeOH (600 ml) was added and the soln. heated under reflux for 10 min. The solvent and Me₂S were distilled off, H₂O (300 ml) was added and the mixture extracted with Et₂O (4 × 250 ml). The extracts were washed with brine (250 ml), dried (MgSO₄), and evaporated, and the brown residue was distilled (68°/0.2 Torr): 40.73 g (68.3%) of 4a. Colorless oil which crystallized at 4°. An anal. sample was obtained by recrystallization from MeOH. M.p. 47–48°. IR (KBr): 1730s, 1440s, 1252m. ¹H-NMR (CDCl₃): 0.72–0.93 (m, 1 H); 1.60–1.75 (m, 1 H); 1.86-2.20 (m, 6 H); 3.71 (s, 3 H); 3.78 (s, 3 H). ¹³C-NMR (CDCl₃): 21.55, 26.46, 34.98, 35.88, 52.61, 52.63, 168.18, 170.70. MS: 198 (14, M⁺), 169 (16), 168 (5), 167 (50), 166 (80), 165 (13), 151 (6), 139 (10), 138 (52), 137 (27), 135 (29), 134 (61), 133 (7), 132 (11), 123 (15), 113 (5), 111 (7), 110 (8), 108 (9), 107 (43), 106 (44), 105 (18), 101 (10), 99 (4), 97 (5), 95 (7), 94 (4), 93 (28), 92 (6), 91 (6), 81 (8), 80 (16), 79 (100), 78 (25), 77 (44), 75 (4), 71 (5), 69 (10), 68 (10), 67 (41), 66 (16), 65 (7), 59 (37), 55 (9), 54 (5), 53 (16), 52 (11), 51 (9), 50 (4), 45 (6), 44 (4), 41 (19), 40 (4), 39 (19), 29 (7), 28 (15), 27 (8), 18 (17), 17 (7), 14 (19).

Bicyclo[3.1.0]hexane-6,6-dicarboxylic Acid (6a). A soln. of 4a (9.9 g, 50 mmol) and KOH (50 g) in H₂O/MeOH 1:1 (250 ml) was heated under reflux for 48 h. Most of the MeOH was distilled off under reduced pressure, H₂O (100 ml) added, the clear soln. extracted with Et₂O (100 ml), and the aq. phase acidified with 25% HCl soln. (150 ml) and evaporated. Extraction of the white residue with hot Et₂O (4 × 100 ml) and evaporation gave 8.50 g of a white powder. Recrystallization from H₂O yielded 7.74 g (91%) of 6a. White crystals. M.p. 190–191° (decarbox.). IR (KBr): 3700–2200 (br.), 1700s. 1 H-NMR ((D₆)DMSO): 0.94–1.14 (m, 1 H); 1.58–1.73 (m, 1 H); 1.82–2.06 (m, 6 H); 3.50 (br., 1 H); 12.25 (br., 1 H). 13 C-NMR ((D₆)DMSO): 21.76, 26.40, 33.73, 36.28, 168.85, 171.91. MS: 170 (7, 4 H-), 154 (5), 153 (44), 152 (100), 151 (29), 141 (7), 135 (16), 134 (68), 133 (6), 126 (4), 125 (24), 124 (82), 123 (65), 112 (4), 111 (8), 110 (8), 108 (11), 107 (16), 106 (42), 105 (18), 97 (8), 96 (25), 95 (15), 84 (14), 83 (7), 82 (7), 81 (11), 80 (20), 79 (57), 78 (25), 77 (34), 71 (4), 69 (6), 68 (18), 67 (27), 66 (36), 65 (6), 55 (10), 54 (6), 53 (15), 52 (7), 51 (8), 45 (6), 43 (6), 41 (24), 39 (17), 27 (7).

2',2'-Dimethylspiro {bicyclo[3.1.0]hexane-6,5'-[1,3]dioxane}-4',6'-dione (1a). A suspension of finely powdered 6a (6.80 g, 40 mmol) in isopropenyl acetate (4.80 g, 48 mmol) was stirred well at 0° under Ar. H_2SO_4 (0.3 ml) was added dropwise within 20 min by means of a syringe, and the resulting brown slurry was stirred at 0° for 1 h. After standing at 4° for 16 h, cold H_2O (10 ml) was added to the partially crystallized dark mixture. The precipitate was filtered off and washed with a 2nd portion of cold H_2O (10 ml). The red-brown solid was extracted with boiling hexane (4 × 40 ml). Recrystallization of the remaining residue from H_2O gave 2.05 g (30%) of recovered diacid 6a (m.p. 189–190°, decarbox.). The combined hexane extracts were diluted with Et_2O (100 ml), washed with brine (100 ml), dried (MgSO₄), and evaporated: 2.55 g (43% rel. to converted 6a) of 1a, essentially pure according to 1H -NMR. Yellowish crystals. M.p. 82–85°. An anal. sample was obtained by 2 recrystallizations from hexane. M.p. 87–88°. IR (KBr): 1762s, 1740s. 1H -NMR (CDCl₃): 1.78 (s, 6 H); 1.90–2.30 (m, 6 H); 2.87–2.93 (m, 2 H). 13 C-NMR (CDCl₃): 26.34, 26.73, 27.39, 35.25, 46.12, 104.01, 164.57, 167.73. MS: 195 (11, [M – Me]+), 154 (4), 153 (49), 152 (100), 151 (11), 135 (20), 134 (94), 125 (8), 124 (90), 123 (46), 109 (4), 108 (6), 107 (8), 106 (27), 105 (9), 96 (12), 95 (10), 81 (5), 80 (12), 79 (39), 78 (7), 77 (16), 68 (7), 67 (19), 66 (33), 59 (15), 55 (7), 53 (4), 52 (4), 43 (15), 41 (4), 39 (4).

Dimethyl Bicyclo[4.1.0]heptane-7,7-dicarboxylate [12] (4b). As described for 4a. The crude product was purified by recrystallization from MeOH instead of distillation. Yield 43%. Yellowish crystals. M.p. 82–87°. An anal. sample was obtained by recrystallization from MeOH. M.p. 87–88.5°. IR (KBr): 1725s, 1435m, 1255m. ¹H-NMR (CDCl₃): 0.95–1.10 (m, 2 H); 1.20–1.35 (m, 2 H); 1.80–2.00 (m, 6 H); 3.70 (s, 3 H); 3.80 (s, 3 H). ¹³C-NMR (CDCl₃): 19.70, 20.70, 25.54, 35.36, 52.28, 52.67, 167.99, 171.74. MS: 213 (7), 212 (38, M+), 185 (4), 184 (43), 182 (10), 181 (69), 180 (100), 179 (7), 170 (10), 169 (63), 165 (18), 159 (4), 158 (59), 156 (4), 154 (4), 153 (32), 152 (88), 151 (8), 150 (12), 149 (62), 148 (68), 147 (9), 139 (31), 138 (4), 137 (26), 135 (4), 134 (12), 133 (75), 132 (12), 127 (5), 126 (44), 125 (8), 124 (37), 123 (14), 122 (51), 121 (33), 120 (65), 119 (9), 113 (26), 111 (8), 109 (7), 107 (14), 105 (7), 101 (14), 99 (4), 98 (34), 97 (4), 96 (6), 95 (9), 94 (20), 93 (48), 92 (20), 91 (27), 85 (5), 83 (4), 82 (5), 81 (42), 80 (50), 79 (37), 78 (6), 77 (18), 71 (10), 69 (9), 68 (11), 67 (11), 66 (10), 65 (11), 59 (30), 55 (13), 54 (4), 53 (9), 45 (4), 43 (4), 41 (16), 39 (9), 27 (4), 18 (12).

Bicyclo[4.1.0]heptane-7,7-dicarboxylic Acid [13] (**6b**). As described for **6a**. Yield 74%. Slightly brown crystals. M.p. 176–177° (decarbox.; [13]: m.p. 186–188°). IR (KBr): 3700–2200 (br.), 1700s. ¹H-NMR ((D_6)DMSO): 1.00–1.17 (m, 2 H); 1.17–1.32 (m, 2 H); 1.58–1.68 (m, 2 H); 1.80–2.00 (m, 4 H); 3.50 (br., 1 H); 12.68 (br., 1 H). ¹³C-NMR ((D_6)DMSO): 19.55, 20.66, 23.75, 35.48, 168.69, 172.82. MS: 184 (1, M^+), 168 (5), 167 (44), 166 (100), 165 (13), 156 (16), 151 (15), 149 (19), 148 (69), 147 (7), 141 (35), 140 (4), 139 (21), 138 (83), 137 (17), 131 (5), 130 (51), 128 (7), 125 (29), 124 (47), 123 (46), 122 (35), 121 (20), 120 (63), 119 (7), 113 (8), 112 (59), 111 (7), 110 (40), 109 (6), 107 (6), 105 (13), 99 (18), 98 (4), 97 (16), 96 (14), 95 (12), 94 (27), 93 (43), 92 (18), 91 (35), 85 (7), 84 (36), 83 (5), 82 (17), 81 (31), 80 (48), 79 (37), 78 (8), 77 (24), 71 (4), 69 (8), 68 (23), 67 (19), 66 (17), 65 (13), 57 (4), 55 (21), 54 (6), 53 (17), 51 (4), 45 (5), 43 (6), 41 (16), 40 (4), 39 (15), 29 (4), 27 (6), 18 (6).

2',2'-Dimethylspiro {bicyclo[4.1.0]heptane-7,5'-[1,3]dioxane}-4',6'-dione [14] (1b). As described for 1a. Yield 83%. Brownish crystals. M.p. 74–78°. An anal. sample was obtained by 2 recrystallizations from hexane. M.p. $80-81^{\circ}$ ([14]: m.p. $87-88^{\circ}$). IR (KBr): 1763s, 1740s. 1 H-NMR (CDCl₃): 1.27-1.42 (m, 2 H); 1.63-1.83 (m, 4 H); 1.77 (s, 6 H); 1.96-2.12 (m, 2 H); 2.58-2.69 (m, 2 H). 13 C-NMR (CDCl₃): 18.08, 20.32, 27.44, 32.73, 35.84, 103.97, 164.77, 169.13. MS: 208 (3, $[M-CH_4]^+$), 167 (17), 166 (100), 165 (5), 149 (19), 148 (62), 139 (13), 138 (95), 137 (8), 125 (7), 124 (8), 123 (23), 122 (21), 121 (15), 120 (62), 112 (15), 110 (17), 109 (6), 107 (5), 99 (6), 97 (4), 96 (5), 95 (7), 94 (27), 93 (43), 92 (9), 91 (16), 84 (15), 83 (4), 82 (9), 81 (34), 80 (24), 79 (54), 78 (8), 77 (19), 69 (5), 68 (49), 67 (8), 66 (12), 65 (11), 59 (17), 57 (6), 56 (4), 55 (12), 54 (5), 53 (13), 52 (7), 51 (4), 44 (4), 43 (29), 42 (5), 41 (18), 40 (5), 39 (11), 29 (6), 28 (14), 27 (8), 18 (18).

Bicyclo[4.1.0]heptane-7,7-dicarbonitrile (5). To a soln. of Me_2S_2 (4.71 g, 50 mmol) in CH_2Cl_2 (30 ml) was added SO_2Cl_2 (6.75 g, 50 mmol) at -50° . After stirring for 5 min, cyclohexene (3b; 8.22 g, 100 mmol) was added

dropwise at -50° within 15 min. The solvent and SO₂ were evaporated at r.t., and the residual oil was transferred by means of a pipette into a soln. of sodiomalononitrile (prepared from a suspension of NaH (4.8 g, 110 mmol) in THF (50 ml) and malononitrile (7.27 g, 110 mmol) in THF (50 ml)) and heated under reflux for 15 h. The solvent was distilled off, H_2O (100 ml) added, and the mixture extracted with Et_2O (4 × 100 ml). The extracts were washed with brine (100 ml) and dried (MgSO₄), and the solvent was distilled off. To the remaining brown oil, dimethyl sulfate (18.90 g, 150 mmol) was added and the mixture allowed to stand at r.t. for 120 h. To the crude solid, Et₃N (15 g, 150 mmol) in DMF (50 ml) was added and stirred at r.t. for 90 min. The solvent was distilled off (80°/50 Torr), 1M HCl (100 ml) added, and the mixture extracted with Et₂O (4 × 100 ml). The combined extracts were washed with aq. NaHCO₃ soln. (100 ml) and brine (100 ml) and dried (MgSO₄), and the solvent was distilled off. The residue (orange oil) crystallized partially after 17 h at -20° . The supernatant liquid was decanted, the crystals were dissolved in cyclohexane, and the soln. was filtered through SiO₂. Crystallization yielded 3.76 g (26%) of 5. White plates. M.p. 58.5-59°. An anal. sample was obtained by recrystallization from cyclohexane. M.p. 60.5-61.5°. IR (KB_I): 2242m, 1450m, 1050m, ¹H-NMR (CDCl₂): 1.30–1.60 (m, 4 H); 1.80–2.00 (m, 2 H); 2.10–2.30 (m, 4 H). ¹³C-NMR (CDCl₃): 9.12, 19.57, 19.73, 29.54, 113.52, 116.36. MS: 147 (20), 146 (67, M⁺⁺), 133 (8), 132 (63), 130 (6), 129 (5), 121 (7), 120 (22), 119 (21), 118 (5), 107 (19), 106 (44), 105 (18), 94 (5), 81 (6), 80 (13), 79 (13), 78 (17), 77 (16), 76 (5), 68 (28), 67 (24), 66 (7), 65 (9), 64 (9), 63 (9), 56 (8), 55 (100), 54 (9), 53 (15), 52 (7), 51 (10), 42 (24), 41 (38), 40 (5), 39 (32), 29 (6), 28 (16), 27 (15), 18 (22), 17 (8).

3. Cbl-Catalyzed Isomerization. (R)-5-(Cyclopent-2-enyl)-2,2-dimethyl-1,3-dioxane-4,6-dione ((+)-2a). A 500-ml vessel containing H₂O (300 ml), NH₄Cl (2 g), Zn powder (20 g), and a magnetic stirrer bar was sonicated in an ultrasonic bath for 1 min. After Ar had been bubbled through the soln. for 10 min, OH-Cbl·HCl (1.38 g, 1 mmol) was added. Stirring under Ar led to a color change from red to dark green (Cbl(I)) within a few min. To this mixture, a soln. of 1a (10.5 g, 50 mmol) in THF (25 ml, previously flushed with Ar) was injected at once (→ fine dispersion of 1a). After 2 h of stirring at r.t. (TLC: no 1a left), 1 M KHSO₄/H₂O (50 ml) was added to the dispersion and the aq. phase extracted with Et₂O (4 × 150 ml). Drying of the extracts (MgSO₄) and evaporation yielded 9.08 g (87%) of 2a. White, fluffy solid. M.p. 117-122°. $[\alpha]_{2}^{22} = +101.3$ (c = 0.72, MeOH). The ee of this crude 2a was determined to be 81% after conversion to the iodolactone (-)-13a and enantioselective GC on column A (vide infra). An anal. sample of 2a was obtained by recrystallization from MeOH. M.p. 124-125°. $[\alpha]_D^{22} = +101.6$ (c = 0.32, MeOH). IR (KBr): 3070w, 1780s, 1740s. ¹H-NMR (CDCl₃): 1.77 (s, 3 H); 1.80 (s, 3 H); 1.80–1.90 (m, 1 H); 2.20-2.34 (m, 1 H); 2.37-2.43 (m, 1 H); 2.46-2.58 (m, 1 H); 3.60-3.68 (m, 2 H); 5.71-5.75 (m, 1 H); 5.89-5.93(m, 1 H). ¹³C-NMR (CDCl₃): 27.41, 27.48, 28.47, 32.31, 45.49, 50.00, 104.88, 129.98, 133.76, 164.90, 164.96, MS: $195(14, [M - Me]^+), 182(31), 153(7), 152(43), 146(4), 145(47), 135(20), 134(48), 129(52), 125(15), 124(100), 134($ 123 (15), 109 (11), 108 (67), 107 (54), 106 (21), 96 (15), 87 (5), 84 (4), 81 (8), 80 (48), 79 (67), 78 (17), 77 (33), 69 (6), 68 (14), 67 (74), 66 (81), 65 (14), 61 (10), 59 (33), 58 (4), 55 (5), 53 (8), 52 (8), 51 (9), 44 (4), 43 (44), 41 (19), 40 (6), 39 (16), 27 (6), 18 (12). Anal. calc. for C₁₁H₁₄O₄ (210.23): C 62.85, H 6.71; found: C 62.78, H 6.70.

The ee of crude 2a from a similar reaction was increased from 78 to 81% by 2 recrystallizations from cyclohexane, and from 81 to 95% by 2 recrystallizations from MeOH.

(R)-5-(Cyclohex-2-enyl)-2,2-dimethyl-1,3-dioxane-4,6-dione ((+)-2b). As described for 2a. Yield 98%. White, fluffy solid. M.p. 126-127°. [α] $_{0}^{22}$ = +28.9 (c = 0.31, MeOH). Enantioselective GC (column C, 70°) showed 4 signals: t_{R} 5.71 (8.30%; (R)-cyclohex-2-enyl ketene (GC-MS)), 5.94 (46.06%; (S)-cyclohex-2-enyl ketene), corresponding to 70% ee of (+)-2b; 20.04 (7.30%; (-)-2b), 20.50 (38.35%; (+)-2b), corresponding to 68% ee of (+)-2b. An anal. sample of (+)-2b was obtained by recrystallization from MeOH. M.p. 131-132°. [α] $_{D}^{22}$ = +30.7 (c = 0.14, MeOH). IR (KBr): 1775s, 1742s. ¹H-NMR (CDCl₃): 1.52-1.92 (m, 4 H); 1.78 (s, 3 H); 1.81 (s, 3 H); 1.97-2.18 (m, 2 H); 3.21-3.32 (m, 1 H); 3.56 (d, d = 3.3, 1 H); 5.53 (d, d = 8.5, 1 H); 5.79-5.88 (m, 1 H). ¹³C-NMR (CDCl₃): 22.31, 24.52, 25.72, 27.65, 28.28, 36.89, 50.33, 104.85, 127.14, 129.39, 164.76, 164.91. MS: 208 (2, M — CH₄] $^+$), 166 (8), 148 (7), 139 (9), 138 (100), 129 (6), 123 (8), 122 (41), 121 (18), 120 (12), 110 (9), 107 (15), 95 (5), 94 (54), 93 (45), 92 (8), 91 (15), 82 (4), 81 (36), 80 (47), 79 (42), 78 (7), 77 (23), 68 (6), 67 (4), 66 (23), 65 (8), 60 (7), 59 (15), 55 (7), 53 (8), 51 (4), 44 (5), 43 (28), 41 (13), 40 (4), 39 (8), 28 (8), 27 (7), 18 (9). Anal. calc. for C₁₂H₁₆O₄ (224.26): C 64.27, H 7.19; found: C 64.32, H 7.24.

4. Determination of the Configuration. (R)-Cyclopent-2-en-1-ol [9] ((+)-11a). Through a mixture of MeOH (80 ml), NH₄Cl (8 g), and activated Zn wool (5 g; wrapped around a magnetic stirrer bar), Ar was bubbled for 10 min by means of a syringe needle. After addition of OH−Cbl·HCl (4.15 g, 3.00 mmol) and stirring for 0.5 h, the color changed from red to dark green (cob(I)alamin). Epoxide 10a [20] (25.25 g, 300 mmol) was injected at once (→ red-brown (alkylcob(III)alamin). After 6 d of stirring under Ar at r.t. (GC: no 10a left), Et₂O (200 ml) was added, the red-brown precipitation filtered off over Celite and washed with Et₂O (2 × 100 ml), the slightly red filtrate dried (MgSO₄), filtered through Celite, and evaporated, and the residual clear, brownish oil distilled over a 10-cm

Vigreux column (58–59°/18 Torr): 17.25 g (66%) of 11a. Clear, colorless oil. Purity 97.5% (GC). Enantioselective GC (column A, 50°): t_R 7.49 (17.82%; (-)-11a), 8.13 (79.82%; (+)-11a), corresponding to 62% ee of (+)-11a. [α] $_{10}^{12}$ = +89.7 (neat). IR (film): 3600–2700 (br.), 3060m, 1050m. ¹H-NMR (CDCl₃): 1.60–1.82 (m, 1 H); 2.15–2.33 (m, 2 H); 2.42–2.58 (m, 1 H); 2.82 (d, d = 6.6, OH); 4.80–4.91 (m, 1 H); 5.78–5.87 (m, 1 H); 5.92–6.00 (m, 1 H). ¹³C-NMR (CDCl₃): 31.01, 33.11, 77.35, 133.41, 134.84. MS: 84 (45, d), 83 (100), 82 (8), 69 (7), 67 (15), 66 (37), 65 (21), 63 (4), 57 (13), 56 (18), 55 (58), 54 (4), 53 (10), 51 (6), 43 (14), 42 (14), 41 (31), 40 (17), 39 (40).

(S)-(Cyclopent-2-enyl)acetic Acid ((+)-12a). A suspension of (+)-2a (6.30 g, 30 mmol) in 1M HCl (100 ml) was stirred at 60° until a clear soln. was formed (22 h). Extraction with Et₂O (6 × 50 ml), drying of the extracts (MgSO₄), and evaporation gave a white powder (5.84 g, dicarboxylic acid). Heating of the diacid to 200° (15 min, 400 Torr) caused melting and decarboxylation. Bulb-to-bulb distillation (200°/50 Torr) afforded 3.45 g (91%) of (+)-12a. Clear, slightly yellow liquid. [α] $_D^{12}$ = +86.6 (neat). IR (film): 3700–2200 (br.), 1700s. ¹H-NMR (CDCl₃): 1.43–1.56 (m, 1 H); 2.10–2.23 (m, 1 H); 2.27–2.50 (m, 4 H); 3.04–3.18 (m, 1 H); 5.68–5.72 (m, 1 H); 5.77–5.82 (m, 1 H); 10.10 (br., 1 H). ¹³C-NMR (CDCl₃): 29.67, 31.64, 40.24, 41.79, 131.77, 133.42, 179.57. MS: 126 (27, M^+), 109 (7), 108 (70), 98 (4), 97 (8), 83 (7), 81 (14), 80 (23), 79 (31), 77 (12), 69 (4), 68 (11), 67 (100), 66 (72), 65 (16), 60 (12), 55 (8), 54 (5), 53 (8), 41 (20), 39 (13), 28 (9), 18 (37), 17 (6).

(3aS,6 R,6aR)-Hexahydro-6-iodo-2H-cyclopental b]furan-2-one ((-)-13a). A soln. of I₂ (12.5 g, 50 mmol) and KI (25 g, 150 mmol) in H₂O (75 ml) was added to a soln. of (+)-12a (3.15 g, 25 mmol) in 0.5M aq. NaHCO₃ (150 ml, 75 mmol) and allowed to stand at r.t. in the dark for 64 h. A 20% aq. Na₂S₂O₃ soln. (150 ml) was added and the nearly colorless soln. extracted with Et₂O (4 × 100 ml). Enantioselective GC of the combined extracts (column A, 120°): t_R 30.43 (90.4%; (-)-13a), 31.69 (9.6%; (+)-13a), corresponding to 81% ee of (-)-13a. The Et₂O soln. was dried (MgSO₄) and evaporated: yellow oil (6.25 g) that crystallized. Recrystallization from hexane/Et₂O gave 3.84 g (61%) of (-)-13a. Long, yellowish needles. M.p. 68-69°. [a] $_D^{12}$ = -51.8 (c = 0.39, MeOH). Enantioselective GC (column A, 120°): t_R 30.27 (100%; (-)-13a). IR (KBr): 1170s, 1180m, 1000m. ¹H-NMR (CDCl₃): 1.56-1.67 (m, 1 H); 2.00-2.23 (m, 2 H); 2.39 (dd, J = 18.4, 2.2, 1 H); 2.40-2.54 (m, 1 H); 2.91 (dd, J = 18.4, 9.9, 1 H); 3.12-3.24 (m, 1 H); 4.49 (d, J = 4.8, 1 H); 5.23 (d, J = 6.3, 1 H). ¹³C-NMR (CDCl₃): 29.40, 32.09, 34.64, 36.02, 36.10, 92.32 (m, 1 H); 4.92 (25 (56, M⁺), 223 (11), 155 (5), 154 (5), 127 (5), 126 (15), 125 (100), 108 (6), 107 (70), 97 (51), 96 (7), 95 (30), 83 (45), 82 (4), 81 (48), 80 (15), 79 (69), 78 (5), 77 (17), 70 (5), 69 (67), 68 (12), 67 (42), 66 (9), 65 (9), 59 (4), 57 (8), 56 (4), 55 (62), 54 (6), 53 (27), 52 (7), 51 (7), 43 (13), 42 (17), 41 (72), 40 (13), 39 (45), 31 (4), 29 (14), 28 (11), 27 (35), 18 (42), 17 (9).

(S)-(Cyclohex-2-enyl)acetic Acid ((+)-12b). As described for (+)-12a, (+)-2b was hydrolyzed (64 h) and decarboxylated (250°/400 Torr, 15 min). Yield 92%. Clear, slightly yellow liquid. [α] $_D^{22}$ = +38.2 (neat). IR (film): 3700–2200 (br.), 1710s. ¹H-NMR (CDCl₃): 1.27–1.49 (m, 1 H); 1.50–1.66 (m, 1 H); 1.66–1.79 (m, 1 H); 1.82–1.94 (m, 1 H); 1.95–2.04 (m, 2 H); 2.31 (dd, J = 15.4, 8.1, 1 H); 2.49 (dd, J = 15.4, 7.0, 1 H); 2.54–2.69 (m, 1 H); 5.53–5.62 (m, 1 H); 5.70–5.80 (m, 1 H); 10.74 (br., 1 H). ¹³C-NMR (CDCl₃): 20.94, 25.00, 28.77, 32.04, 40.62, 128.41, 129.82, 179.37. MS: 141 (9), 140 (60, M⁺), 139 (7), 123 (11), 122 (61), 121 (4), 112 (10), 111 (17), 98 (11), 97 (30), 96 (34), 95 (23), 94 (32), 93 (11), 91 (8), 84 (15), 83 (16), 82 (16), 81 (83), 80 (100), 79 (67), 78 (19), 77 (20), 71 (6), 70 (17), 69 (14), 68 (47), 67 (53), 66 (12), 65 (8), 61 (9), 60 (4), 57 (12), 56 (9), 55 (45), 54 (21), 53 (18), 43 (12), 42 (7), 41 (30), 40 (4), 39 (18), 29 (6), 28 (4), 27 (7), 18 (9).

(3aS,7R,7aR)-Octahydro-7-iodobenzofuran-2-one ((-)-13b). A soln. of I₂ (2.50 g, 10 mmol) and KI (5 g, 30 mmol) in H_2O (15 ml) was added to a soln. of (+)-12b (0.70 g, 5 mmol) in 0.5m aq. NaHCO₃ (30 ml, 15 mmol) and allowed to stand at r.t. in the dark for 22 h. A 20% aq. Na₂S₂O₃ soln. (30 ml) was added and the nearly colorless soln. extracted with Et₂O (4 × 20 ml). Enantioselective GC of the combined extracts (column B, $150 \rightarrow 230^{\circ}$, 2° /min): t_R 31.20 (82.89%; (-)-13b), 33.68 (17.11%; (+)-13b), corresponding to 66% ee of (-)-13b. The Et₂O soln. was dried (MgSO₄) and evaporated: yellow oil (1.22 g) that crystallized. Recrystallization from hexane/Et₂O yielded 0.61 g (46%) of (-)-13b. Yellowish crystals. M.p. 94-96°. Enantioselective GC (column B, 150 \rightarrow 230°, 2° /min): $t_{\rm R}$ 31.25 (99.48 %; (-)-13b), 33.87 (0.52 %; (+)-13b) corresponding to 99 % ee of (-)-13b. An anal. sample was obtained by a 2nd recrystallization from hexane/Et₂O. Slightly yellow crystals. M.p. 96-96.5°. $[\alpha]_D^{0.2} = -56.6$ (c = 0.41, MeOH). Enantioselective GC (column B, $150 \rightarrow 230^{\circ}$, $2^{\circ}/min$): t_R 30.84 (100%; (-)-13b). IR (KBr): 1768s, 1158m, 969m. ¹H-NMR (CDCl₃): 1.26–1.41 (m, 1 H); 1.49–1.64 (m, 1 H); 1.65–1.88 (m, 2 H); 1.88–2.02 (m, 2 H); 2.30 (dd, J = 16.9, 3.3, 1 H); 2.59 (dd, J = 16.9, 6.6, 1 H); 2.75–2.87 (m, 1 H); 4.60–4.64 (m, 1 H); 4.71 (t, J = 4.4, 1 H). ¹³C-NMR (CDCl₃): 20.55, 26.47, 27.68, 30.66, 32.60, 37.03, 83.06, 176.08. MS: 267 (11), 266 (90, M^+), 141 (8), 140 (65), 139 (94), 123 (9), 122 (62), 121 (55), 112 (5), 111 (13), 97 (24), 96 (6), 95 (37), 94 (25), 93 (38), 92 (4), 91 (14), 84 (7), 83 (14), 82 (10), 81 (72), 80 (100), 79 (73), 78 (21), 77 (28), 70 (9), 69 (7), 68 (10), 67 (49), 66 (7), 65 (10), 61 (33), 60 (4), 57 (9), 56 (5), 55 (39), 54 (14), 53 (18), 51 (4), 43 (13), 41 (33), 39 (19), 29 (5), 27 (7).

Ethyl (R)-2-(Cyclopent-2-enyl)acetate. A soln. of 11a (2.88 g, 33.3 mmol; ee (GC) 60.6%), triethyl orthoacetate (25 ml), and hydrochinone (0.11 g, 1 mmol) was stirred in a hot oil bath (140°; 10-cm Vigreux column,

distillation head). After 15 h, 2.2 ml of EtOH had been distilled off. The temp. of the oil bath was raised to 170° which led to distillation of most of the excessive orthoacetate (ca. 16 ml) within 30 min. After 7 h at 170° , the residual brown mixture was distilled ($58-86^{\circ}/20$ Torr) to afford a clear, colorless oil (4.31 g). GC: 70% of ethyl (cyclopentenyl)acetate (i.e. 59% yield) and 30% triethyl orthoacetate. [α] $_{D}^{22} = -16.7$ (neat); ee (GC) $_{D}^{3}$) 54.7%. An anal. sample was obtained by flash chromatography (SiO₂, AcOEt/hexane 1:9). IR (film): 3060w, 1740s, 1030m. $_{D}^{1}$ H-NMR (400 MHz, CDCl₃): 1.27 (t, 3 H); 1.43–1.51 (m, 1 H); 2.08–2.18 (m, 1 H); 2.26–2.43 (m 4 H); 3.06–3.14 (m, 1 H); 4.15 (q, 2 H); 5.65–5.70 (m, 1 H); 5.75–5.80 (m, 1 H). $_{D}^{13}$ C-NMR (25.2 MHz, CDCl₃): 14.29, 29.61, 31.85, 40.50, 42.09, 60.20, 131.41, 133.75, 172.99. MS: 154 (5, M^{+}), 125 (11), 109 (9), 108 (12), 107 (11), 88 (18), 83 (18), 81 (6), 80 (19), 79 (26), 70 (8), 68 (5), 67 (100), 66 (37), 65 (7), 61 (7), 60 (8), 53 (4), 41 (17), 39 (7), 29 (10), 28 (9), 27 (4).

(3a R,6S,6aS)-Hexahydro-6-iodo-2H-cyclopenta[b]furan-2-one ((+)-13a). A soln. of the crude ethyl (R)-2-(cyclopent-2-enyl)acetate (3.3 g, 70% pure according to GC, 15 mmol; ee 54.7%) in EtOH (90 ml) and 0.5M NaOH (90 ml, 45 mmol) was allowed to stand at r.t. for 2 h. Crushed dry ice (30 g) was added. After the evolution of CO₂ had ceased, a soln. of I_2 (7.5 g, 30 mmol) and KI (15 g, 90 mmol) in H_2O (45 ml) was added and the mixture allowed to stand at r.t. in the dark for 20 h. A 20% Na₂S₂O₃ soln. was added slowly until the color of I_2 just disappeared (ca. 40 ml). The clear, slightly yellow soln. was kept at 4° for 2 h and then seeded with (+)-13a. After 5 d at 4°, enantiomerically pure (enantioselective GC) (+)-13a (0.79 g, 21%) crystallized. Long, white needles. M.p. 62-63°. An anal. sample was obtained by recrystallization from hexane/Et₂O. M.p. 68-69°. [α] $_D^{22}$ = +53.7 (c = 0.3, MeOH). Spectral data: identical with those of (-)-13.

REFERENCES

- R. W. Kierstead, R. W. Linstead, B. C. L. Weedon, J. Chem. Soc. 1952, 3610; P. L. Fuchs, J. Am. Chem. Soc. 1974, 96, 1607; W. G. Dauben, ibid. 1975, 97, 1622.
- [2] J. M. Steward, H. H. Westberg, J. Org. Chem. 1965, 30, 1951.
- [3] R. K. Singh, S. Danishefsky, J. Org. Chem. 1976, 41, 1668.
- [4] J. E. Dolfini, K. Menich, P. Corlias, S. Danishefsky, R. Cavanaugh, S. Chakrabartty, Tetrahedron Lett. 1966, 4421.
- [5] E.J. Corey, P.L. Fuchs, J. Am. Chem. Soc. 1972, 94, 4014.
- [6] H. Ogoshi, J. Setsune, Z. Yoshida, J. Chem. Soc., Chem. Commun. 1975, 572.
- [7] H. Ogoshi, Y. Kikuchi, T. Yamaguchi, H. Toi, Y. Aoyama, Organometallics 1987, 6, 2175.
- [8] S. Danishefsky, R. K. Singh, J. Am. Chem. Soc. 1975, 97, 3239.
- [9] H. Su, L. Walder, Z.-da Zhang, R. Scheffold, Helv. Chim. Acta 1988, 71, 1073.
- [10] Z.-da Zhang, R. Scheffold, Helv. Chim. Acta 1993, 76, 2602.
- [11] C. G. Frost, J. Howarth, J. M. J. Williams, Tetrahedron: Asymmetry 1992, 3, 1089; O. Reiser, Angew. Chem. 1993, 105, 576.
- [12] J. Ohishi, Synthesis 1980, 690.
- [13] H. Musso, Chem. Ber. 1968, 101, 3710.
- [14] S. Danishefsky, R. K. Singh, J. Org. Chem. 1975, 40, 2969.
- [15] A. J. Anciaux, A. J. Hubert, A. F. Noels, N. Petiniot, P. Teyssié, J. Org. Chem. 1980, 45, 695.
- [16] R. E. Ireland, R. H. Müller, J. Am. Chem. Soc. 1972, 94, 5897.
- [17] W. S. Johnson, L. Werthemann, W. R. Bartlett, T.J. Brocksom, T. Li, D. Faulkner, M. R. Peterson, J. Am. Chem. Soc. 1970, 92, 741.
- [18] P. Bonhôte, R. Scheffold, Helv. Chim. Acta 1991, 74, 1425.
- [19] J. N. Grate, G. N. Schrauzer, J. Am. Chem. Soc. 1979, 101, 4601.
- [20] L. Goodman, A. Benitez, B. R. Baker, J. Am. Chem. Soc. 1958, 80, 1680.

For determination of the ee, the ethyl (cyclopentenyl)acetate (2 drops) was dissolved in 0.5M NaOH (1 ml). After 1 h, little dry ice, followed by a few drops of an aq. I₂/KI soln. was added. After 10 min, the mixture was decolorized with a Na₂S₂O₃ soln. and shaken with Et₂O (0.5 ml). The Et₂O phase containing iodolactone 13 was directly analyzed.